Skip to content

StanfordCS224N自然语言处理

课号:CS224N

教授:Christopher Manning & John Hewitt

评论贡献者:Hao Shen

课程信息

自然语言处理(NLP)是人工智能重要的组成部分。从网络搜索、广告、电子邮件到客户服务、语言翻译、虚拟代理、医疗报告等,NLP 的应用几乎无处不在。近年来,深度学习方法在许多 NLP 任务上获得了非常高的性能。

而这门课程旨在向学习者介绍自然语言处理(NLP)的基本概念和思想,全面了解NLP深度学习的前沿研究。同时,通过讲座、作业和期末专题,学习者将学习设计、完成和理解自己的神经网络模型的必要技能。

这门课程涉及的主题包括:词向量;RNN,Seq2Seq;机器翻译,注意力机制;Transformer 和预训练模型;问答系统;自然语言生成;T5 和大型语言模型等。

适合人群

对自然语言处理感兴趣,想要入门的同学。

先修条件

  • 能熟练使用Python(最好会使用Numpy和Pytorch库)
  • 线性代数和概率论的课程
  • 有一定机器学习的基础

PS:个人觉得只要接触过机器学习的课程(推荐吴恩达李宏毅老师的课程),学这门课都没难度。

以下是官方的prerequisites.

  • Proficiency in Python

All class assignments will be in Python (using NumPy and PyTorch). If you need to remind yourself of Python, or you're not very familiar with NumPy, you can come to the Python review session in week 1 (listed in the schedule). If you have a lot of programming experience but in a different language (e.g. C/C++/Matlab/Java/Javascript), you will probably be fine.

  • College Calculus, Linear Algebra (e.g. MATH 51, CME 100)

You should be comfortable taking (multivariable) derivatives and understanding matrix/vector notation and operations.

  • Basic Probability and Statistics(e.g. CS 109 or equivalent)

You should know basics of probabilities, gaussian distributions, mean, standard deviation, etc.

  • Foundations of Machine Learning (e.g. CS221, CS229, or CS230)

We will be formulating cost functions, taking derivatives and performing optimization with gradient descent. If you already have basic machine learning and/or deep learning knowledge, the course will be easier; however it is possible to take CS224n without it. There are many introductions to ML, in webpage, book, and video form. One approachable introduction is Hal Daumé’s in-progress A Course in Machine Learning. Reading the first 5 chapters of that book would be good background. Knowing the first 7 chapters would be even better!

课程评价

  • Christopher Manning 不用多说,学术和讲课水平一致。

Christopher Manning 是斯坦福大学 AI 实验室主任、人工智能和计算语言学领域的权威专家。他曾先后在卡内基梅隆大学、悉尼大学等任教,1999 年回到母校斯坦福,就职于计算机科学和语言学系,是斯坦福自然语言处理组(Stanford NLP Group)的创始成员及负责人。

  • 课程设计包括了NLP领域中绝大部分的内容,同时官网也提供了很多的阅读资料,符合各类人群的需求。

The following texts are useful, but none are required. All of them can be read free online.

If you have no background in neural networks but would like to take the course anyway, you might well find one of these books helpful to give you more background:

  • 课程作业内容有一定的难度,且贴合课程内容。完整的做完作业,对本课程的理解会有很大的帮助。
  • 网络上有很多相关的作业代码参考和项目的参考~

非官方资料推荐

后续课程推荐

文件列表

  • StanfordCS224N自然语言处理